3.1.83 \(\int \frac {x^5 (d+e x)^3}{(d^2-e^2 x^2)^{7/2}} \, dx\)

Optimal. Leaf size=174 \[ \frac {127 d^2 (d+e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {13 d^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^6}+\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {d^4 (d+e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d+e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {1635, 1815, 641, 217, 203} \begin {gather*} \frac {d^4 (d+e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d+e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d+e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}+\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}-\frac {13 d^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^5*(d + e*x)^3)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(d^4*(d + e*x)^3)/(5*e^6*(d^2 - e^2*x^2)^(5/2)) - (23*d^3*(d + e*x)^2)/(15*e^6*(d^2 - e^2*x^2)^(3/2)) + (127*d
^2*(d + e*x))/(15*e^6*Sqrt[d^2 - e^2*x^2]) + (3*d*Sqrt[d^2 - e^2*x^2])/e^6 + (x*Sqrt[d^2 - e^2*x^2])/(2*e^5) -
 (13*d^2*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(2*e^6)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 1635

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, -Simp[(d*f*(d + e*x)^m*(a + c*x^2)^(p + 1))/(2*
a*e*(p + 1)), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)*Q
 + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p +
 1/2, 0] && GtQ[m, 0]

Rule 1815

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], e = Coeff[Pq, x, Expon[Pq, x]]}, Si
mp[(e*x^(q - 1)*(a + b*x^2)^(p + 1))/(b*(q + 2*p + 1)), x] + Dist[1/(b*(q + 2*p + 1)), Int[(a + b*x^2)^p*Expan
dToSum[b*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b*e*(q + 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, p}, x]
&& PolyQ[Pq, x] &&  !LeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x^5 (d+e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx &=\frac {d^4 (d+e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {(d+e x)^2 \left (\frac {3 d^5}{e^5}+\frac {5 d^4 x}{e^4}+\frac {5 d^3 x^2}{e^3}+\frac {5 d^2 x^3}{e^2}+\frac {5 d x^4}{e}\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d}\\ &=\frac {d^4 (d+e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d+e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {(d+e x) \left (\frac {37 d^5}{e^5}+\frac {45 d^4 x}{e^4}+\frac {30 d^3 x^2}{e^3}+\frac {15 d^2 x^3}{e^2}\right )}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^2}\\ &=\frac {d^4 (d+e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d+e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d+e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {\frac {90 d^5}{e^5}+\frac {45 d^4 x}{e^4}+\frac {15 d^3 x^2}{e^3}}{\sqrt {d^2-e^2 x^2}} \, dx}{15 d^3}\\ &=\frac {d^4 (d+e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d+e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d+e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {\int \frac {-\frac {195 d^5}{e^3}-\frac {90 d^4 x}{e^2}}{\sqrt {d^2-e^2 x^2}} \, dx}{30 d^3 e^2}\\ &=\frac {d^4 (d+e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d+e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d+e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}+\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}-\frac {\left (13 d^2\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx}{2 e^5}\\ &=\frac {d^4 (d+e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d+e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d+e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}+\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}-\frac {\left (13 d^2\right ) \operatorname {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^5}\\ &=\frac {d^4 (d+e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d+e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d+e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}+\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}-\frac {13 d^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^6}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 131, normalized size = 0.75 \begin {gather*} \frac {(d+e x) \left (\sqrt {1-\frac {e^2 x^2}{d^2}} \left (304 d^4-717 d^3 e x+479 d^2 e^2 x^2-45 d e^3 x^3-15 e^4 x^4\right )-195 d (d-e x)^3 \sin ^{-1}\left (\frac {e x}{d}\right )\right )}{30 e^6 (d-e x)^2 \sqrt {d^2-e^2 x^2} \sqrt {1-\frac {e^2 x^2}{d^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^5*(d + e*x)^3)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

((d + e*x)*(Sqrt[1 - (e^2*x^2)/d^2]*(304*d^4 - 717*d^3*e*x + 479*d^2*e^2*x^2 - 45*d*e^3*x^3 - 15*e^4*x^4) - 19
5*d*(d - e*x)^3*ArcSin[(e*x)/d]))/(30*e^6*(d - e*x)^2*Sqrt[d^2 - e^2*x^2]*Sqrt[1 - (e^2*x^2)/d^2])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.58, size = 123, normalized size = 0.71 \begin {gather*} -\frac {13 d^2 \sqrt {-e^2} \log \left (\sqrt {d^2-e^2 x^2}-\sqrt {-e^2} x\right )}{2 e^7}-\frac {\sqrt {d^2-e^2 x^2} \left (304 d^4-717 d^3 e x+479 d^2 e^2 x^2-45 d e^3 x^3-15 e^4 x^4\right )}{30 e^6 (e x-d)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x^5*(d + e*x)^3)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

-1/30*(Sqrt[d^2 - e^2*x^2]*(304*d^4 - 717*d^3*e*x + 479*d^2*e^2*x^2 - 45*d*e^3*x^3 - 15*e^4*x^4))/(e^6*(-d + e
*x)^3) - (13*d^2*Sqrt[-e^2]*Log[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e^2*x^2]])/(2*e^7)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 192, normalized size = 1.10 \begin {gather*} \frac {304 \, d^{2} e^{3} x^{3} - 912 \, d^{3} e^{2} x^{2} + 912 \, d^{4} e x - 304 \, d^{5} + 390 \, {\left (d^{2} e^{3} x^{3} - 3 \, d^{3} e^{2} x^{2} + 3 \, d^{4} e x - d^{5}\right )} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) + {\left (15 \, e^{4} x^{4} + 45 \, d e^{3} x^{3} - 479 \, d^{2} e^{2} x^{2} + 717 \, d^{3} e x - 304 \, d^{4}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{30 \, {\left (e^{9} x^{3} - 3 \, d e^{8} x^{2} + 3 \, d^{2} e^{7} x - d^{3} e^{6}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

1/30*(304*d^2*e^3*x^3 - 912*d^3*e^2*x^2 + 912*d^4*e*x - 304*d^5 + 390*(d^2*e^3*x^3 - 3*d^3*e^2*x^2 + 3*d^4*e*x
 - d^5)*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + (15*e^4*x^4 + 45*d*e^3*x^3 - 479*d^2*e^2*x^2 + 717*d^3*e*x
 - 304*d^4)*sqrt(-e^2*x^2 + d^2))/(e^9*x^3 - 3*d*e^8*x^2 + 3*d^2*e^7*x - d^3*e^6)

________________________________________________________________________________________

giac [A]  time = 0.30, size = 118, normalized size = 0.68 \begin {gather*} -\frac {13}{2} \, d^{2} \arcsin \left (\frac {x e}{d}\right ) e^{\left (-6\right )} \mathrm {sgn}\relax (d) - \frac {{\left (304 \, d^{7} e^{\left (-6\right )} + {\left (195 \, d^{6} e^{\left (-5\right )} - {\left (760 \, d^{5} e^{\left (-4\right )} + {\left (455 \, d^{4} e^{\left (-3\right )} - {\left (570 \, d^{3} e^{\left (-2\right )} + {\left (299 \, d^{2} e^{\left (-1\right )} - 15 \, {\left (x e + 6 \, d\right )} x\right )} x\right )} x\right )} x\right )} x\right )} x\right )} \sqrt {-x^{2} e^{2} + d^{2}}}{30 \, {\left (x^{2} e^{2} - d^{2}\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

-13/2*d^2*arcsin(x*e/d)*e^(-6)*sgn(d) - 1/30*(304*d^7*e^(-6) + (195*d^6*e^(-5) - (760*d^5*e^(-4) + (455*d^4*e^
(-3) - (570*d^3*e^(-2) + (299*d^2*e^(-1) - 15*(x*e + 6*d)*x)*x)*x)*x)*x)*x)*sqrt(-x^2*e^2 + d^2)/(x^2*e^2 - d^
2)^3

________________________________________________________________________________________

maple [A]  time = 0.01, size = 222, normalized size = 1.28 \begin {gather*} -\frac {e \,x^{7}}{2 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {3 d \,x^{6}}{\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {13 d^{2} x^{5}}{10 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}} e}+\frac {19 d^{3} x^{4}}{\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}} e^{2}}-\frac {76 d^{5} x^{2}}{3 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}} e^{4}}-\frac {13 d^{2} x^{3}}{6 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}} e^{3}}+\frac {152 d^{7}}{15 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}} e^{6}}+\frac {13 d^{2} x}{2 \sqrt {-e^{2} x^{2}+d^{2}}\, e^{5}}-\frac {13 d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}\, e^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x)

[Out]

-1/2*e*x^7/(-e^2*x^2+d^2)^(5/2)+13/10/e*d^2*x^5/(-e^2*x^2+d^2)^(5/2)-13/6/e^3*d^2*x^3/(-e^2*x^2+d^2)^(3/2)+13/
2/e^5*d^2*x/(-e^2*x^2+d^2)^(1/2)-13/2/e^5*d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)/(-e^2*x^2+d^2)^(1/2)*x)-3*d*x^6/(
-e^2*x^2+d^2)^(5/2)+19/e^2*d^3*x^4/(-e^2*x^2+d^2)^(5/2)-76/3/e^4*d^5*x^2/(-e^2*x^2+d^2)^(5/2)+152/15/e^6*d^7/(
-e^2*x^2+d^2)^(5/2)

________________________________________________________________________________________

maxima [B]  time = 1.03, size = 305, normalized size = 1.75 \begin {gather*} -\frac {e x^{7}}{2 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}}} + \frac {13}{30} \, d^{2} e x {\left (\frac {15 \, x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{2}} - \frac {20 \, d^{2} x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{4}} + \frac {8 \, d^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{6}}\right )} - \frac {3 \, d x^{6}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}}} - \frac {13 \, d^{2} x {\left (\frac {3 \, x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{2}} - \frac {2 \, d^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{4}}\right )}}{6 \, e} + \frac {19 \, d^{3} x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{2}} - \frac {76 \, d^{5} x^{2}}{3 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{4}} + \frac {152 \, d^{7}}{15 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{6}} + \frac {26 \, d^{4} x}{15 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{5}} - \frac {91 \, d^{2} x}{30 \, \sqrt {-e^{2} x^{2} + d^{2}} e^{5}} - \frac {13 \, d^{2} \arcsin \left (\frac {e x}{d}\right )}{2 \, e^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

-1/2*e*x^7/(-e^2*x^2 + d^2)^(5/2) + 13/30*d^2*e*x*(15*x^4/((-e^2*x^2 + d^2)^(5/2)*e^2) - 20*d^2*x^2/((-e^2*x^2
 + d^2)^(5/2)*e^4) + 8*d^4/((-e^2*x^2 + d^2)^(5/2)*e^6)) - 3*d*x^6/(-e^2*x^2 + d^2)^(5/2) - 13/6*d^2*x*(3*x^2/
((-e^2*x^2 + d^2)^(3/2)*e^2) - 2*d^2/((-e^2*x^2 + d^2)^(3/2)*e^4))/e + 19*d^3*x^4/((-e^2*x^2 + d^2)^(5/2)*e^2)
 - 76/3*d^5*x^2/((-e^2*x^2 + d^2)^(5/2)*e^4) + 152/15*d^7/((-e^2*x^2 + d^2)^(5/2)*e^6) + 26/15*d^4*x/((-e^2*x^
2 + d^2)^(3/2)*e^5) - 91/30*d^2*x/(sqrt(-e^2*x^2 + d^2)*e^5) - 13/2*d^2*arcsin(e*x/d)/e^6

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^5\,{\left (d+e\,x\right )}^3}{{\left (d^2-e^2\,x^2\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^5*(d + e*x)^3)/(d^2 - e^2*x^2)^(7/2),x)

[Out]

int((x^5*(d + e*x)^3)/(d^2 - e^2*x^2)^(7/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{5} \left (d + e x\right )^{3}}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {7}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(e*x+d)**3/(-e**2*x**2+d**2)**(7/2),x)

[Out]

Integral(x**5*(d + e*x)**3/(-(-d + e*x)*(d + e*x))**(7/2), x)

________________________________________________________________________________________